Topic 7. COST ALLOCATION II

CONTENT

- 7.1. Common cost allocation
- 7.2. Joint-cost situations

Introduction

- How should the airline costs of a trip to attend job interviews from London to Dubai to Tunis and then return to London be allocated among the prospective employers in Dubai and Tunis?
- Why do managers ask this questions? >>> To allocate costs.

Common cost

- A common cost
is a cost of operating a facility, operation activity or other cost object
- that is shared by two or more users.

> Example,
> the cost of tickets for Paula from Galway
> to visit possible employers in Moscow and Prague
> with the round trip Galway-Moscow-Prague-Galway

Stand-alone cost-allocation method

- The Stand-alone cost-allocation method uses information related to each cost object
- as a separate operating entity
- to determine the cost-allocation weights.
+ Fairness rationale

Incremental cost-allocation method

- The Incremental cost-allocation method
rank the individual cost objects
and then uses this ranking to allocate costs among those cost objects.

First ranked object - primary party
Second-ranked - incremental party (can be more than one, should be ranked)

Primary party receives the highest allocation of common costs.
7.2 Joint-cost situations

Main product, by-product, scap

If a product yields only one product with a relatively high sales value, that product is termed a main product.

By-product has a low sales value to compare to main product.

Scap has a minimum sales value.

Joint-product

Joint-product

The term joint product is reserved for cases where the production process yields multiple high sales value products.
Split-off point is the moment when one product becomes other products. (sale or further processing decisions)
Joint cost - the cost of common production process.
Separable costs are costs incurred beyond the split-off point that are assigned to one or more individual products.

- Irrelevance of joint costs for decision making In a sell or process further decision, - the joint costs will be incurred - whether or not the product is processed further.

Why allocate joint costs?

- Stock cost and cost-of-goods-sold calculations for internal and external financial reporting.
- Customer profitability analysis
individual customers purchase varying combinations of joint products or by-products
- Rate regulation
- One or more of the jointly produced products or services are subject to price regulation

Allocating joint costs

1. Based on market data (for example, revenues)
a. The sales value at split-off method
b. The estimated net realisable value (NRV) method
c. The constant gross-margin percentage NRV method
2. Using physical units measure-based data such as weight of volume.

Sales value at split-off method

- The Sales value at split-off method allocates joint costs on the basis
- of the relative sales value at the split-off point
- of the total production - in the accounting period of each product.

Sales value = total production * seling price
Costs are allocated to products in proportion to their ability to contribute revenues.

- The Physical measure method allocates joint costs on the basis
- of their relative proportion at the split-of point,
- using a common physical measure - such as weight or volume of the total production of each product.

Obtaining the common physical measure is not always possible.

Exhibit 6.6

Allocation of joint costs using the physical measure method

Cream	Liquid skim	Total
25	75	100
0.25	0.75	
$€ 100$	$€ 300$	$€ 400$
$€ 1$	$€ 1$	

Exhibit 6.7
Farmers' Dairy product-line income statement for May 2015: joint costs allocated using the physical measure method

	Cream	Liquid skim	Total
Sales (cream, 80 litres $\times € 2$; liquid skim, 120 litres $\times € 1$)	$€ 160$	€120	€280
Joint costs			
Production costs (cream, $0.25 \times € 400$; liquid skim, $0.75 \times € 400$)	100	300	400
Deduct closing stock (cream, 20 litres $\times € 1$; liquid skim, 180 litres $\times € 1$)	20	180	200
Cost of goods sold	80	120	200
Gross margin	$€ 80$	€0	$€ 80$
Gross-margin percentage	50\%	0\%	28.6\%

- The Estimated net realisable value (NRV) method allocates joint costs on the basis
- of the relative estimated net realisable value -
- expected final sales value
- in the ordinary course of business
- minus expected separable costs of production and marketing of the total production of the period.
There may not be any market prices at the split-off point.

Exhibit 6.9	g the e	ed NRV met	
	Butter cream	Condensed milk	Total
1 Expected final sales value of production (butter cream, 80 litres $\times € 6.25$; condensed milk, 200 litres $\times € 5.5$)	$€ 500$	€1100	€1600
2 Deduct expected separable costs to complete and sell	280	520	800
3 Estimated NRV at split-off point	€220	$€ 580$	$€ 800$
4 Weighting ($£ 220 \div € 800$; $€ 880 \div € 800$)	0,275	0.725	
5 Joint costs allocated (butter cream,	€110	€290	€400
$\begin{aligned} & 0.275 \times € 400 \text {; condensed milk, } \\ & 0.725 \times € 400) \end{aligned}$			
6 Production costs per litre [butter cream $(€ 110+€ 280) \div 80$ litres; condensed milk $(€ 290+€ 520) \div 200$ litres]	€4.875	$€ 4.05$	

Exhibit 6.10

Farmers' Dairy product-line income statement for May 2015: joint costs allocated using the estimated NRV method

Butter cream	Condensed milk	Total

Sales (butter cream, 48 litres $\times € 6.25$; condensed milk, 180 litres $\times € 5.5$)	€300	€990	$€ 1290$
Cost of goods sold			
Joint costs (butter cream, $0.275 \times € 400$; condensed milk, $0.725 \times € 400$)	110	290	400
Separable processing costs	280	520	800
Cost of goods available for sale	390	810	1200
Deduct closing stock (butter cream, 32 litres $\times € 4.875$; condensed milk,			
20 litres $\times € 4.05$)	156	81	237
Cost of goods sold	234	729	963
Gross margin	€66	$€ 261$	€327
Gross-margin percentage	22.0\%	26.4\%	$\underline{\underline{25.3 \%}}$

Constant gross-margin percentage NRV method

- The Constant gross-margin percentage NRV method
allocates joint costs in such a way - that the overall gross-margin percentage - is identical for all the individual products.

Entails 3 steps.

1. Calculate the overall gross margin percentage
2. Deduct gross margin from the final sales values to obtain cost that each product should bear
3. Deduct the expected separate costs

Exhibit 6.11 Farmers' Dairy for May 2015: joint co gross-margin percentage NRV metho		Farmers' Dairy for May 2015: joint costs allocated using constant gross-margin percentage NRV method	
	Butter cream	Condensed milk	Total
Step 1			
Expected final sales value of production: (80 litres $\times € 6.25$) $+(200$ litres $\times € 5.5)$		€1600	
Deduct joint and separable costs ($£ 400+€ 280+€ 520)$		1200	
Gross margin		¢400	
Gross-margin percentage ($€ 400 \div € 1600$)		25\%	
Step 2			
Expected final sales value of production (butter cream, 80 litres $\times € 6.25$; condensed milk, 200 litres $x € 5.5$)	$€ 500$	$€ 1100$	$€ 1600$
Deduct gross margin, using overall gross-margin percentage (25%)	125	275	
Cost of goods sold	$\frac{125}{375}$	825	$\frac{400}{1200}$
Step 3 -			
Deduct separable costs to complete and sell	280	520	800
Joint costs allocated	$€ 95$	$€ 305$	$€ 400$

${ }^{6}$ Ghimani A, Horngren CT, Datar SM and Rajan M. Management and Cost Accounting, 5/E. Financial Times Press 2012.

Chapter 5 and 6.

